Анализатор Aquaread модели AP-LITE является младшим в линейке анализаторов серии AP и предназначен для измерения одного из физико-химических параметров природной, сточной и очищенной воды. Анализатор может применяться в проектах где не требуется одновременное измерение большого количества параметров, а компактность и невысокая стоимость имеют первостепенное значение. Анализатор имеет порт для подключения любого оптического сенсора из линейки сменных сенсоров Aquaread. Измеряемый параметр зависит от установленного сенсора, а конструкция анализатора позволяет менять сенсоры по мере необходимости в течение нескольких секунд, что позволит одним комплектом производить различные измерения того или иного параметра.
Aquameter - многопараметрический портативный прибор контроля качественных параметров воды. Модульная конструкция позволяет подключать измерительный блок Aquaprobe, содержащий в себе до 11-ти датчиков (Aquaprobe 1000), и выводить результаты измерений на дисплей прибора Aquameter. Прибор способен измерять одновременно до 20 параметров. Наличие GPS модуля позволяет записывать в память прибора координаты места измерения пробы и измеряемые параметры.
- Мутность
- Хлорофилл
- Сине-зеленые водоросли
- Родамин
- Флуоресцеин
- Светлые нефтепродукты (ПАУ)
- Растворенные органические вещества (РОВ)
Для работы в полевых условиях при проведении кратковременных измерений анализатор подключается к портативному терминалу Aquameter. Портативный терминал имеет память для хранения результатов и встроенный GPS приемник, благодаря которому к измеренным данным добавляется метка геопозиции места проведения анализа.
Для проведения средне и долгосрочных временных измерений, а также для работы в стационарных условиях анализаторы серии AP могут быть подключены к автономным логгерам или к устройству передачи текущих данных в систему SCADA в режиме on-line.
Технические характеристики
Наименование | Значения |
Степень защиты | IP68 |
Максимальная глубина погружения, м. | 100 на срок не дольше 1 недели 30 при постоянном погружении |
Рабочий диапазон температуры, гр.С | -5…+70 |
Размеры, мм. (длина х диаметр) | 250х24 |
Масса, гр | 400 |
Метрологические характеристики
Мутность | Диапазон | 0-3000 NTU |
Разрешение | 2 шкалы: 0-100 NTU, 100-3000 NTU | |
Погрешность | 5% от шкалы | |
Хлорофилл | Диапазон | 0-500 мкг/л |
Разрешение | 2 шкалы: 0-100 мкг/л, 100-500 мкг/л | |
Погрешность | 5% от значения | |
Фикоцианин (пресноводные СЗВ) | Диапазон | 0-300000 ячеек/мл |
Разрешение | 1 ячейка/мл | |
Погрешность | 10% от значения | |
Фикоэритрин (морские СЗВ) | Диапазон | 0-200000 ячеек/мл |
Разрешение | 1 ячейка/мл | |
Погрешность | 10% от значения | |
Родамин | Диапазон | 0-500 мкг/л |
Разрешение | 2 шкалы: 0-100 мкг/л, 100-500 мкг/л | |
Погрешность | 5% от значения | |
Флуоресцеин | Диапазон | 0-500 мкг/л |
Разрешение | 2 шкалы: 0-100 мкг/л, 100-500 мкг/л | |
Погрешность | 5% от значения | |
Светлые нефтепродукты | Диапазон | 0-10000 мкг/л |
Разрешение | 0,1 мкг/л | |
Погрешность | 10% от значения | |
РОВ | Диапазон | 0-20000 мкг/л (Сульфат хинина) |
Разрешение | 2 шкалы (0-10000 мкг/л, 10000-20000 мкг/л | |
Погрешность | 10% от значения |
Хлорофилл
Хлорофилл - зеленый пигмент, который содержится в растениях, и он жизненно важен для фотосинтеза. Измерение содержания хлорофилла в воде важно для оценки численности фитопланктона. Если обнаружен высокий уровень хлорофилла, это свидетельствует о том, что в воде присутствует высокий уровень фитопланктона.
Обилие фитопланктона связано с наличием питательных веществ, а также с уровнями фосфатов и нитратов в воде. Это может быть вызвано попаданием загрязняющих веществ в воду, например, сельскохозяйственным стоком или сливом сточных вод. Естественная концентрация хлорофилла в воде меняется со временем. Например, концентрация часто выше после дождя и летом, когда температура воды и уровень освещенности повышаются. Измерение хлорофилла в воде позволяет понять естественные уровни хлорофилла, присутствующего в воде, и определить, есть ли изменения, которые могут указывать на то, что некий загрязнитель попадает в воду.
Мутность
Мутность - это свойство жидкости, которое является результатом того, что частицы вода содержит не растворенные, а взвешенные частицы. Повышенный уровень мутности повышает температуру воды, поскольку тепло поглощается взвешенными частицами. Теплая вода содержит меньше растворенного кислорода, чем холодная, поэтому повышение температуры воды приводит к снижению уровня растворенного кислорода.
Повышенная мутность также уменьшает количество света, который может проникать в воду, тем самым уменьшая фотосинтез и выработку растворенного кислорода. Повышенная мутность может оказать негативное влияние на экосистему в водоеме. Внезапные изменения в мутности могут быть признаком появления нового источника загрязнения, или с питьевой водой может возникнуть проблема в процессе очистки.
Сине-зеленые водоросли
Сине-зеленые водоросли - это фотосинтетические бактерии, которые растут как в пресной, так и в морской воде. Чаще всего сине-зеленые водоросли растут в озерах, прудах и медленных ручьях, где вода теплая и богатая питательными веществами. Большинство видов плавучие, поэтому всплывают на поверхность воды и образуют пленку с эффектом цветения водорослей. Бактерии быстро размножаются, потому что их обычно не едят другие виды. Цветение водорослей может быть очень заметным из-за зеленой пленки, которая может образовываться на поверхности воды, однако не всегда есть видимые признаки этого процесса в водоемах. В таких случаях необходимо измерение концентрации сине-зеленых водорослей.
Важно контролировать уровень сине-зеленых водорослей в воде, потому что цветение может иметь разрушительные последствия для водоема. Оно вызывает изменение цвета воды, снижение проникновения света, предотвращение появления растворенного кислорода во время отмирания и образование токсинов. Снижение проникновения света влияет на другие водные организмы в среде обитания, такие как фитопланктон и водные растения, которые нуждаются в свете для фотосинтеза.
Это также влияет на организмы, которые используют растения в пищу. Когда сине-зеленые водоросли отмирают, клетки погружаются в воду, чтобы разрушиться микробами, процесс, который требует кислорода. Это приводит к биологической потребности в кислороде, которая снижает концентрацию кислорода в воде, отрицательно влияя на рыбу и другие водные организмы. Это имеет серьезные последствия для экосистемы в целом.
Флуоресцеин
Флуоресцеин - это синтетическое органическое соединение, которое было первым флуоресцентным красителем, использующимся для отслеживания распространения воды. Флуоресцеин излучает ярко-зеленую флуоресценцию и используется для изучения гидравлических моделей и подземных вод. В последние годы флуоресцеин был почти полностью заменен родамином, однако все еще существуют применения, в которых использование флуоресцеина является целесообразным или предпочтительным.
Преимуществами использования флуоресцеина для отслеживания воды являются его низкая скорость поглощения и тот факт, что он излучает ярко-зеленую флуоресценцию, которая облегчает визуализацию хода вашего эксперимента. Недостатки заключаются в том, что флуоресцеин быстро разрушается солнечным светом, флуоресценция заметно падает ниже рН 5,5, и многие встречающиеся в природе флуоресцентные материалы с аналогичными характеристиками могут мешать измерениям.
Родамин
Родамин является флуоресцентным индикаторным красителем, который имитирует движение молекул воды и указывает, как вода движется. Мониторинг родамина в воде полезен для отслеживания загрязняющих веществ, изучения аэрации и рассеивания, а также для многих других применений, когда необходимо понять движение воды.
Одним из наиболее распространенных видов использования родамина является измерение времени прохождения поверхностных, грунтовых и сточных вод. Время в пути относится к движению переносимых водой веществ из одной точки в другую в потоке во время устойчивых или постепенно изменяющихся условий потока. Эта форма тестирования родамина включает впрыскивание родамина в воду, при этом концентрация красителя измеряется в других местах ниже по течению.
Флуоресцентные свойства родамина означают, что при облучении светом определенной длины волны он излучает свет с большей длиной волны. Датчик родамина измеряет свет, излучаемый родамином. Концентрация красителя в воде зависит от флуоресценции, поэтому это измерение дает точное представление об уровнях родамина в пробе воды.
Светлые нефтепродукты (ПАУ)
Очищенные нефтепродукты, такие как бензол, толуол, этилбензол и ксилолы (BTEX), и другие полиароматические углеводороды могут быть измерены с использованием анализатора очищенных нефтепродуктов на основе флуорисценции. Полиароматические углеводороды (ПАУ) - это летучие органические соединения, которые содержатся в нефтепродуктах. Они могут быть вредными как для людей, так и для животных, в случае если они всасываются через кожу, проглатываются или вдыхаются. Нефтепродукты могут прилипать к жабрам рыб и влиять на их дыхание. Они также могут прилипать и уничтожать водоросли и планктон, который является основным производителем в пищевой цепочке.
Источники ПАУ включают в себя: процессы переработки сырой нефти, ливневые стоки и разливы с асфальта и заправочных станций, а также производственные предприятия, такие как производство автомобилей, пластмасс и стали. Наличие ПАУ в стоках также может быть следствием утечек в трубопроводах, резервуарах или контейнерах.
Использование анализатора ПАУ позволяет измерять количество нефтепродуктов в воде. Газовая или жидкостная хроматография является обычным методом измерения концентрации нефтепродуктов в воде, но необходимые инструменты и материалы могут быть дорогими, а экспресс измерения не всегда возможны. Анализатор ПАУ позволяет быстро обнаружить эти соединения на месте, чтобы можно было принять меры для предотвращения дальнейшего загрязнения и начать процесс очистки.
Растворенные органические вещества
Окрашенное или хромофорное растворенное органическое вещество (CDOM) представляет собой растворенное вещество природного происхождения, которое поглощает ультрафиолетовый свет в воде. Обычно он состоит из танинов, которые выделяются вследствие распада растительного материала. Фракция CDOM флуоресцирует, когда поглощает свет определенного спектра, и называется флуоресцентным растворенным органическим веществом, или FDOM.
CDOM / FDOM используется для измерения относительного количества растворенного органического материала (DOM) в воде. Хотя это происходит естественным образом, влияние человека через такие аспекты, как заготовка леса, сельское хозяйство, сброс сточных вод и осушение водно-болотных угодий, может повлиять на уровни CDOM в пресноводных и устьевых системах.
Крайне важно измерить уровни CDOM / FDOM и понять их тенденции, потому что они могут оказать существенное влияние на водные экосистемы. Повышенные уровни CDOM / FDOM могут ингибировать (угнетать) рост фитопланктона и ограничивать фотосинтез, разрушая пищевую цепочку и ограничивая выработку кислорода в водоемах.